
77j-A095 727 MARTIN MARIETTA AEROSPACE DENVER CO DENVER DIV '/ 9/02
TOTAL SYSTEM DESIGN METHODOLOGYA 1 TAE 301-8C05

JNCLASSIFIED RADC-TR-80-337 N*uIuuuuuIIImI
II flllllffffffffEEEEEEEEEl/h/hi
IEEEEE~lllhEEE
EEEEEEEEElhi-l
*lflllllll

RADC-TR-80-337
Final Technical Report
January 1981

U TOTAL SYSTEM DESIGN METHODOLOGY

MARTIN MARIETTA AEROSPACE

EDWARD C. STANKE, II DTIC
S MAR 0 21913j

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

a- ROME AIR DEVELOPMENT CENTER
c3 Air Force Systems Command

'I." Griffiss Air Force Base, New York 13441
L-

O~l. L) ,,. i.

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80- 3 3 7 has been reviewed and is approved for publication.

APPROVED:

NATHAN B. CLARK, Capt, USAF
Project Engineer

APPROVED:

NIAK, Colonel, USAF
Information Sciences Division

FOR THE COMMANDER: -

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mail-
ing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISCA), Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return this copy. Retain or destroy.

ILL . I i ...

UNCLASSIFIED

SECURITY.C4 ASSIFICATION OF THIS PAGE 'W1.en Dee. Eniered)

flf, READ INSTRUCTIONS/ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REP-rT NUMSFR ,2. GOVT ACCESSION NO. 3 RECIPIENVS CATALOG NUMBER

RADrR-80-337'_-RA.E Dl Cl~ q I IA Q Q gR

4. TITLV7d SebwI) ,r' 5--YPL05.IA-6RT5g.ROO~a9E
. Final Yechnical Repat,.

TOTAL SYSTEM DESIGN ,METHODOLOGYE 23 Auj 78-31 Aug 80.
"Zft"ORM 01G. REPORT N&I/fR

N/A
7 AUTmOR(s) 3. CONTRACT OR GRANT NUMBER(s)

Edward C., Stanke, i F30602-78-C-0250

9, PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Martin Marietta Aerospace (Denver Division) AREA & WORK UNIT NUMBERS

P Box 179 62702F

Denver CO 80201
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (ISCA) Januu l /
Griffiss AFB NY 13441 64 UMEOPAE

I4. MONITORING AGENCY NAME & ADDRESS(If different from ConloIttni Office) IS. SECURITY CLASS. rol this Tvp-T .

UNCLASSIFIEDSame
IS.. DECLASSIFICATION, DOWNGRADING

N/ASCH
E D

ULE

IS. DISTRIBUTION STATE:MENT ('of tihts Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of rhe abstract entered :. Brock 20, if different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Nathan B. Clark, Capt, USAF (ISCA)

19. KEY WORDS (Continue on reverse side tf neceseary and Identify by block number)

System Design
Methodology

Requirements Analysis
Functional Decomposition

110. ABSTRACT (Contlnue an reverse side It necesery and Identify by block number)

This report describes the Total Systems Design Methodology, including the
philosophy, automated and manual tools and procedures which support it. It

also documents the applications of that methodology to the Navstar Global

Positioning System Operational Control Segment system definition and

conclusions based on that application.

DD I 1473 EDITION OF 1 NOV69 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF TIHIS PAGE (When Date Enered)

IIZ5- - I
i

..

UNCLASSIFIED
SECjRITY CL-ASSII'ICATION air TWIS PAGIE(W7).. Dat .r d

UNCLASSIFIED

SECLIVY CLASSIVICAIOWl op PAaE'Wp,, Does £nt.,.d)

TABLE OF CONTENTS

Page

1.0 INTRODUCTION... 1
2.0 TSD OVERVIEW...........................2
2.1 TSD Conceptual Foundation.............................. 2
2.2 TSD Approach... 7
3.0 TSD TOOLS DESCRIPTION.................................. 10
3.1 Introduction... 10
3.2 Multi-Level Expression Design System (MED Sys) 13
3.2.1 MEDL-R... 14
3.2.2 MEDL-D... 21
3.2.3 MEDL-P, MEDL-X... 22
3.2.4 GAPS.. 24
3.3 Comprehensive Computer Network Modeling (CCNM) 25
3.4 Non-Automated Tools/Procedures......................... 26
3.4.1 Data Flow Diagrams..................................... 27
3.4.2 N2 Charts.. 34
3.5 Other Tools... 35
4.0 TSD USAGE... 42
4.1 Introduction... 42
4.2 Proposal... 42
4.3 Functional Baseline.................................... 45
4.4 Allocated Baseline..................................... 48
5.0 CPS USE OF TSD... 51
5.1 Introduction... 51
5.2 Approach.. 51
5.3 Results... 54
5.4 Conclusions.. 55
6.0 CONCLUSIONS.. 57

Accession For

NTIS G-'&
DTIC T-1B

Unannouinred E

Distri'h:t ion/__

Avail 'Itity Codes
Ll and/or

Dist _peeia

EVALUATION

This effort has advanced the state of the art in computer system

design methodologies by initiating the implementation of a TSD

methodology originally developed by Martin Marietta in their

IR&D p,:jram. This effort also provides a case study analysis

as a method of demonstrating current capabilities and areas for

further implementation.

NATHAN B. CLARK, Capt, USAF
Project Engineer

| 11 l u r . . 111 "l h . ,. ... , -V,

1.0 Technical Problem

The Total System Design (TSD) Methiodology contract had as its goal the

documentation of Martin Marietta's approach to embedded computer system design

and the documentation of the application of that approach to a real world

program. The problem addressed by TSD is the wide variability of projects

involving computers in terms of system success. The intent of the methodology

is to impose a rational approach, supported by automated and manual tools and

procedures, on the process of defining the computer portion of systems. The

computer portion includes the basic hardware, the software driving the hard-

ware and the people who interact with the hardware and software,

2.0 General Methodology

The methodology used in the contract stems from the two purposes of the

contract. First is the documentation of the TSD methodology, including phil-

osophy and supporting tools, both automated and manual. The second is the

documentation of the results from applying the TSD methodology to the Navstar

GPS Operational Control Segment. The contract under which the GPS work was

defined was a Stage 1 contract whose output was A and B level specifications

of the Operational Control Segment of the GPS system. This segment represents

a command and control system with aspects of real time, distributed processing.

3.0 Technical Results

The application of the TSD methodology to the Navstar GPS project provided

several significant conclusions:

1. The requirements analysis process must be aided by some sort of

automated tool. The benefits received will more than compensate

vii

for the initial front end costs.

2. The use of simulation for verification purposes is absolutely

necessary for the architecture definition phase.

3. The step of going from a complete understanding of the functions

of the system to the actual system implementation components is

one serious gap in the methodology.

4. The use of TSD requires an understanding of the methodology and

belief of the people using it in its ability to aid the process.

The overall assessment of the methodology is that it provides a useful

frame of reference and a viable approach which aids system design, but the

methodology is incomplete and more research needs to be done in the area of

system design based on functional decomposition.

viii

j!

1.0 INTRODUCTION

This report documents one view of the d.sign process for computer sys-

tems and the application of that process to a real world prnblen. The use of

the word system in this report refers te the computer portion of a larger

system, which may in general be more encompassing than just the computer.

For example, the sensors in a surveillance system are very much a part of the

system itself but are not included in the definition of system within this

report.

The intent c the Total System Design (TSD) Methodology is to impose a

rational approach to defining what the computer portion of a system should be,

including the underlying hardware, the software which drives the hardware

and the people who interact with the hardware and software. As currently

implemented, the methodology does provide a framework for that rational

approach. There are a number of tools and procedures supporting the method-

ology. However, there are gaps and the interfaces between the various cools

are not always well defined. Work at Martin Marietta in the area of method-

ology and tools is on-going. This work supports the filling of the perceived

gaps and the development of a consolidated support system for system develop-

ment.

This report details the current philosophy and implementation of the

methodology. Section 2.0 gives an overview of TSD by providing a conceptual

foundation and approach. Section 3.0 describes some of the tools currently

supporting TSD and Section 4.0 gives a scenario of TSD use in a system design.

Section 5.0 is the description of TSD application to a real world problem,

the Global Positioning System (GPS). Finally, Section 6.0 describes where

the methodology is now and gives a critique of the methodology based on

actup' use.

1

2.0 TSD OVERVIEW

2.1 TSD Conceptual Foundation

-3,The category of command, control and communications (C) sstems encom-

passes a broad spectrum of military and scientific worlds. Examples of C
3

systems applications include military tactical and strategic command centers,

military intelligence networks, process control systems, satellite operations

, 3
centers and launch control facilities. In the past, some C systems have per-

formed successfully and others have failed miserably. The wide disparity in

the results of the system development, together with the extremely high cost

of failure, have created an urgent need to reduce or eliminate faulty system

design for future systems.

Initial efforts in trying to cope with increasing system complexity

emerged from researchers in the software arena and resulted in concepts such

as structured programming and top-down design. The "Software First Concept"

has emerged relatively recently in response to the continuing decrease in

hardware prices and recognition of the fact that software costs can be, and

very often are, the overriding factor in total C3 system cost. "Software

First" implies that the system designer can decide how to most effectively

implement the system's functional requirements and then select the appropriate

hardware, as opposed to having the software being categorically driven as a

result of premature specification of hardware.

The system development process stands to benefit from this software

activity. Top-down design concepts, for example, are just as applicable to

the process of defining the hardware, software and the action of people, ref-

erred to collectively as the system, as they are to software design. Likewise,

the tools developed primarily for software (e.g., requirements tools) have a

wider applicability.

2

Since Malny of these tools are automated, the possibility arises of dev-

eloping a computer-aided design system to aid the system design process.

Computer-aided sv.stem design is appealing because conceptually state-of-the-

art system design methods could be maintained in the computer system and

accessed interactively to help a system designer in his effort to design a

new system or to modify an existing system. System design could conceivably

become more of a discipline and less of a subjective art. The observation

can be made tnat C3 systems in themselves are extremely varied in complexity

and function and that an automated meLhod of designing such systems would of

nectssLt\ be perhaps an order of magnitude more complex than potential target

systems. Ihis may indeed prove to be the case. Nevertheless, such automated

methods are in themselves .systems, and as such can be implemented by the very

methodolcy they are trving to perpetuate.

Martin Mlarietta is developing a "Computer System Development MIethodolog y,"

a lotal System Design ([SD) Methodology. TSII Methodology is a set of skills,

tools, techniques and facilities whose ultimate purpose is to provide for an

orderly, systematic approach to system design including the key concepts of

baselining and validation at important points in the design process.

The foundation for any svstem design is a set of requirements which

define what the system is to do. The set of requirements for the TSD method-

ology system can be overviewed as follows:

1. Must be receptive to system requirements, both functional and non-

functional. Non-functional system requirements include software maintain-

ability, system life-cycle costs and training. The functional requirements

are stated as machine processabLe problem statements; more about this topic

later.

3

2. Must be receptive to system architecture, where "system architecture"

refers to the mixture of hardware, software and human functions as they inter-

act in the functional system.

3. Must be able to compare various system designs; this requirement is

obvious.

4. Must be capable of interactive design, including feedback regarding

the effect of system architecture changes on the overall performance of the

system.

5. Must be receptive to system requirements changes. System require-

ments changes must be anticipated in any major system, as a general rule.

Some classic causes of system requirements changes include poor planning,

incomplete or inconsistent requirements, lack of visibility and errors not

detected early in the system design. In addition to these glaring causes of

changes, legitimate functional changes should be anticipated due to improved

technology, system expansion and new requirements.

6. Must be capable of supporting system models. The methodology includes

the development and refinement of models of the target system for analysis and

validation purposes. The first model produced, the system functional model,

which is a model of what the system does and not how it does it and which is

hence implementation independent, requires support. The more detailed models,

including simulations and emulations of the target system also require support.

The processes involved in creating, analyzing and modifying the system

baselines form the system developmenL methodology. There are three basic

phases in system development. These phases are interdependent but typical

system development follows the basic sequence shown in Figure 1.

4

Analysis Synthesis Implementation
Phase Phase Phase

Figure 1 System Development Phases
It is important to note that the three phases described do not include

the whole system life cycle, particularly the operations and maintenance of

the system after delivery. The total system development methodology, by its

very nature, does not include specific operation and maintenance but should,

through its effects on the design, produce systems which are more easily

operated, maintained and modified.

There are a number of tools, concepts and methods supporting the imple-

mentaticn phase. For software, for example, these include all the currently

emerging software engineering concepts including top-down design, implementa-

tion and testing, structured coding, program management concepts such as

chief programmer teams, structured walkthroughs and support systems such as

program support libraries, program description languages and high order lan-

guages. For hardware, there are the traditional tools of simulation proto-

typing and breadboards. The legacy and capabilities represented by these

tools, methods and concepts indicate that if the preliminary work done in the

analysis and synthesis phase is viable, the implementation phase, although

still a major part of the development, is more reasonably accomplished. The

TSD methodology therefore concentrates on the initial two phases Gf the sys-

tem development process, analysis and synthesis. If the initial, top-level

system design is based on rational, . 11-defined 5teps, there is a strong

probability that the implementatiou will proceed much more smoothly and the

final resultant system will stand a much better chance of not only solving a

problem but of solving the right problem, the one the customer or user needs

solved.

The first two phases of system development are intimately involved with

the top-level system requirements. These requirements fall into two general

categories: functional requirements, which tell what the system is to do,

and performance requirements, which tell within what constraints the system

must do it. There is a third class, which could be called general, relating

to overall constraints such as power maximums, size constraints, etc. This

class relates to neither function nor performance, although it has an effect

on both and must be included at some point into the process.

The first phase of system development, assuming conceptual and feasibil-

ity studies have demonstrated that solution to the problem is possible and

practical, is the analysis phase. During this phase, the primary emphasis is

on getting a valid appreciation of the problem being solved. This apprecia-

tion includes an understanding of the various pieces necessary from a func-

tional point of view. The major result of this phase is a functional model

of the system, showing how the various components interact and the interfaces

between them.

The analysis phase deals with the functional requirements for the systen.

Performance or general constraints are not included because they relate to

how the system accomplishes its tasks, not to what the system does. The par-

titioning of the what and the how is fundamental to the system development

process. Until the functions that the system must perform are well understood,

6

it is premature to even consider the resources necessary for the system. It

is here that many system developments fall down. One of the primary causes of

problems is the premature selection of components (computer hardware) in an

effort to "show progress" on the system. The more practical approach of let-

ting the functions to be performed dictate the system resources requires a

thorough understanding of the functions before deciding what those resources

are to be.

The second phase, synthesis, uses the functional model of the system dev-

eloped in the analysis phase as a baseline. During this phase, the performance

requirements (constraints), general requirements and current state-of-the-art

are added into the next baseline of the system. This phase includes trade-off

studies, simulation/emulation and whatever other analytical or experimental

techniques will aid in determining the proper hardware, software and human

resources to best fulfill the functional requirements within the performance

and other constraints.

2.2 TSD Approach

Figure 2 depicts Martin Marietta's TSD approach. Figure 2 shows the

various steps which comprise the process, along with the various documents

which are produced during the development. There are several significant

items in this figure. First, the feedback loops are not shown. However, the

realities of system development dictate that the capability to reiterate some

part of the process is absolutely necessary. Second, the figure does put the

stages of system design into the perspective of the reviews specified by

MIL-STD-l 52 IA.

In terms of the analysis and synthesis phases described previously,

everything on the chart up to the system requirements review (SRR) can be

INTEGRATION PHASE OPEATON P 1S
SYSTEM VERIFICATION SYSTEM VALIDATION OEA OSP A E

io - issIimi

Watem ac SytmSmlto

WManual

£Fuhdiwa Inw.ft"r
#11lquiroemnt VerifiwAion Cl C5 VS 1/115 1
* Thiouqt Put Verfiwaion
* PaitiaUsyslem Train ing
*EruI IRPTS
" Training
*A SpK Verifciar

1K . S W. I M.M. I. SYSTEMS DESIGN PROCESSj

WAMC l8smnnd Ooajmuu

DDEI1ME5IPHASE IISEA40r~ YSTEM VERIFICATION

FAN Sub Assy ATP8 & I

Tots 00 Ta

itLL
And Sse

I *pwv Canffq C40trol fne users Mnue,

N, TOM Dmigrtilb,
Miaie

~w Ma'itnance

isw su IM U

Untts 11l y lntqII

Prowm SpcI5 ael A piV0

ICSI lt PrK U-TI51 Ta
G~wi* T wg wi

at puans J e4Cf *e'rAn

Mari
Tranin

A~W Ccnroq fue'wi
RW Sot cl Vaa

I I ft

60

SE ~O&CvPEW PHASE

PRELIMINtARY DESIG DEAICX I

c

IIArialysis DsignDeg

-r Stu INbo
a "a"~r SstmNN wr

Partitioning E flor1nal ta -o

__ ki~h SuWl ftmSflfsSI
. M abee M0"I

a_____1_k-

A"- WoarI o

A' 7,nor I'

9II efin

- fr''cvd LC

___ ____Soft* III)fl~d
0 D0 5'.ystm Susysts S

IASQI&ALLOCATED
ISEsaINIE

ONCEPTUAL PI*S(OI 1irlo POAS(

- RIEQIRWNTS DEFI~lii~i

osstoN pot "W" System,
Rolb & a Ag0 Funciona eqI D~if

Anlyi iDsqn Basii

Prowlr & llais.$ @i Revised System ~ ~ ~ W ~ Peirv ~t
j "'Spec SpecS 0A Lovli A nd.1

Aonal Analysis so oqq Isa (" - A Allocation And
b. Studis I I Le

SConcv j4 R*t 'A CC Preliminary
IAnal & c,'cft Fa Findg1mno,'.dFalSpt Caig item
Qts ual SIMP Qcl I RitWl PU ilinUPSil)PAS . I w pa Ij
iCan coot And hilm OFPIA Masion Rulin

no III Icoul n q
ueatro TrsSj zDeecpSeII riiruqR

*111111A11l1sPoll

aeut Deie Rni au. rl'S ts citri

tran DeiitoraeSud ,

ILI

ok fi l s Syteyes n n erf ce

r ni Pr r

Ta Plan yste

SOK W
Other

11110rmialy Prpmro

-.91111"Ri "Ro

p" P.a

NM~lnj Andss tg Aa~i

* M usu I Pod16

CMCap 0 Usw/Customer Cwt wv~s*uc~a n~i
" sow PrlaibiGoalsRfucinlAays

0 TgchnoI Rowall, *rra* Stuilil0 uhlumff DLegacy 0sOPS Cn,9 -a F11110
e CaistalinsRatribr~ - 5. CRSPaRoqti A., a C.'CC
*Pvowd system~ Ops 5j.-jW CRC OPLans luial. SIMP Ov EI~ I
sSystem Motinq *Dspjn Concept

*SCh$WIeCost An'a"tii *OrabilIest & Final
18416 Irmo aliti, ePrldrqlScajM I

*OP ~Allf Trone
10112 And Resaiorivl e

*Mm4J, 01 Eflectwss

Figure 2. SVSte, *;i, : Proce~ss

categorized as analysis. Synthesis consists of all the steps from the system

requirements review to the critical design review (CDR). The balance of the

figure to the operations phase represents the implementation phase.

The Martin Marietta approach to actually performing the steps of the

system design process depends on a number of tools and procedures, both

manual and automated. The current implementation of the methodology is not

complete and does not provide the end-to-end capability envisioned as the

final result. However, the concepts and philosophy which drive the method-

ology are in place and provide a good backdrop for tool use, evaluation and

enhancement. Every effort is made to use currently available tools wherever

possible to avoid "reinventing the wheel." The discussion which follows will

describe the tools which are currently part of the methodology, how they fit

in and what the gaps are. It will also include a discussion of some manual

approaches which are prime candidates for automation to fill those gaps.

9

3.0 TSD TOOLS DESCRIPTION

3.1 Int L u ' tion

During the analysis phase o! system design, Cie emphasis is on the require-

ments; first, the functional requirements for devcloping an understanding of

the system and the problem it is to solve and, second, the perfor- .ce require-

ments to bound the capabilities necessary on a function-by-function basis.

Since one of the key premises of TSD is the absolute necessity for requirements

traceability and since the methodology is based on developing requirements

driven design, it became clear very early that some kind of requirement data

base manipulation capability is very necessary. This is due to the often

large number of requirements (large programs typically have in the 1000's)

and the impossibility of doing tracking, categorization and manipulation

manually. In addition, heavy emphasis is placed on requirements definition

because of the historical evidence that vague or insufficient requirements

often lead to disproportionately high system cost or subsequent design def-

iciencies.

The second major part of the analysis phase is the functional analysis.

Actions during this phase include what is often termed functional decomposi-

tion or the top-down partitioning of the system functions into more readily

understandable entities. It would be highly useful to have a tool which aids

this functional analysis.

The final part of the analysis process is called requirements allocation

in Figure 2. Requirements allocation refers to the task of deciding the

projected implementation of each functional requirement. This must be done

with a full appreciation of the performance requirements of each function and

within the context of project specific guidelines for allocction. The key

10

tt-k' iiiis1 i-<s. iiT LI i-. ;r' i - d4it' r i'jl]iw . fs

Is It I s 1

-~ 'ove-
2

Yes 'es
N o es

Does Does
Are IR-A TI -TACI Does TRI -TAC

Aleratives TRI-A 'r"e oral s
0 easle &U se 0 Human NC .ofaIt.S N Nriy FJs.eesbe&To Pe rfo r_ Iar&,are ToSfae raeAo~tTosase Peerfor To PerforM 00

S esAilocate Tt

ye e ye syes 0-0~ ar

I Is Is Is

Req Function No ;c./~tiofl %U Function No FunctionPefrAloae o
Assigned 3 Normahly Normally N orrmally taef otsr
RFP Or Assigned To Assigned To Assignied To No SuisFmr
Specs? Hu4.nari tiardware? Softlsare?

Figure 3 Example Requireme-I Allocation Guidelines

Figure 3. Example Requirement Allocation Guidelines

From Figure 3, it is obvious that requirement allocation is a manual

process. It is a prime candidate for iteration, however, when subsequent

validation shows up deficiencies. The key part is the determination of

guidelines and the tradeoff studies which define the allocations to be made.

There do not exist any tools to aid this task.

For the synthesis phase, major emphasis is on the development of a

validated system baseline, the definition of the major hardware, software

and people components, and the interactions/interfaces between them. The

process of developing candidate solution to the function-, ha:: two primary

approaches. The first I a propose/dispose action wher- alternative candi-

dates are pstulated and then evaluated to attempt to dvr.ve a best fit solu-

tion. The second is a form of bottom-up design which uses the requirements

allocation and proposes compositions of functions to dictate the candidate

solutions. These again must be evaluated in terms of how well they solve

the problem. Regardless of the approach, the development of candidate sys-

tems to solve the problem is a very creative process, depending on the

experience, knowledge and background of the system designer. There is

currently no way to accomplish this task by automated tools. However, the

second half of the task, the evaluation or validation, virtually requires a

tool or tools to aid the designer. In the final analysis, there are really

only two ways to validate a candidate system design. The first is the proto-

type method often used in hardware design. The idea behind this is to

actually build one to see if it does what is desired. For systems, this is

clearly impractical. The second is the simulation method. This consists of

the use of a simulation model of the proposed system to answer the relevant

questions.

Simulations, by their very nature, are very flexible. They may be dev-

eloped in a wide range of levels of detail. As the answers required become

more specific, the attendant simulation may become more precise with respect

to its representation of the system being studied. When the simulation

becomes unwieldly, there is the companion technology of emulation to aid

the evaluation process. Thus, the key automated tool for the synthesis phase

is simulation/emulation for evaluation and validation of candidate system

solutions.

12

Wi th these actions and the app I icable support requirements in mind, thlis

section will cover the toois and methods currentlv in use supporting TS1).

3.2 uhilti-Level Lxpression D.sign System (MEI).Ss

The Mult i-level Expression Design System (MElSs) is a group of inter-

related, automated tools designed to assist an analyst by keeping track of a

variety of things as ie progresses through the design. Hlaving been conceived

and developed bv software analysts, MEDV. currently retains a strong software

flavor in its documentation (such as the statement in the MEDL-R users guide

which say's that MEDIvs" is "...a systematic method of managing and controlling

the software development cycle"). However, the currently existing parts of

MED y have been found to be equally useful for system development through

actual ise on projects. This result is to be expected, since the typical

software development cycle is not fundamentally different from the system

development cycle.

The multi-level expression design system is composed of the following

components:

o MEDL-R (Requirements)

o MEDL-X (Document Generation)

o MEDL-D (Design)

o IMEDL-P (Procedure/Behavior)

There was specific emphasis in the development of the philosophy of

MEDSy s on separating the tool that supports requirements (MEDL-R) from the

tool that supports design (MEDL-D). The reason for this emphasis is the per-

ception of the design process which divides it into the analysis and synthesis

phases discussed earlier. The analysis phase deals with the system in such a wav

that design Issues are undesirable and premature. It was found that other require-

13

*F 7

"icut>; tools (g.Pl1\)tIiinljel 01 ly iii' i t [llij- .i. i

conCiptS ill tLhe rtIiv!hit tl~. IliuM, :I 28 ;or efflrt -aS putI illt(71311illp

aI Clar distinlction'll >>0c~irxit t*h:: ci .' im cl '*

w.ill not atllow thte us,1 .liu:l i~l I io- tihe 1lottImr'. etutevn tie no

3.2.1I ' 1L- -

Tin termis of 1111 elleut at ionl, "IE1.1-1 1 i 1 u Iv imp~j I ce to" L 11 . 11i lii

I) rI naI sC11 is reuati1%,,1 kltiire . K:l f irs;t vri

beon imp jleneulted h Ut tie U,;' lis >en mos '1:,)-;L V t st Cci to - L I 11 J -. xic

MEPI. P a re cur rent>I in thc d es;i -,,i s ta,,n. HBased on thi Statu- tn h 1 '.Ii>:

discussion will concent rat c on Ph> K; - K . BJKPK-1 4 rov ides .lie n,,a-. 0 c u nnt

tool w:ichio is so iec es-sarv in th1w arm 1 \ si s ph1a se and w-hich iprov ides for

traceability in the later phases- of system desion

The requirements spoonf ication phase of tLle design process neon Erusto

translation of needs into st eins'hoiseiythef10 in>ihms

be performed in order to meet these needs.

An important outp~ut- of thie renulirenrents isho' aa ala

cle arlyv w.r itten , tuno t ioir I dLuser i 'l io Ol tie s10 : an!I t' e, m'anner(- i:1 '.>

tlk %srwllitr .c it!, LItO~ N5II.Itot a~ 1> Il

sc,:h edules ciii rk. als -o spec if!-ied duir iii z t Ii pili, i t 15 l4 ,i th tlIc , liet ionc1Il

s-pecc if ira t ion tin at mos t o f tile urror,- ai dP if!f iou 1It icsL arc- c'llcounIt crt-d .

Ft shlould comeC theni, as, no urp t tuat the diifferenlce SetcI suI'Ces

.'11 l- fi lreon al pr eelL Ct Ma\ :)t tenii 1i i I c cI ar i t', consistenN vand eomnp 1etc-

lies> .. ih01 t il hthe li5&c il 'ltlt' in t leL relqllir ,nt document

I nadequaite nc'Illi reru-Let to1, i ii.1 i t: t n I~ Is' tsl in f-oli

o Adequate t st L , s i " t,-icuIt U ,or itil), iti .

o The user is Locked out of the dlve 1 opmen t proce!ss

o Project management is not in control.

A well-written requirements document will (or should):

o Be a well-thought-out, complete and non-conflicting record

of the user's needs.

o State specifically the performance of the completed product

and the methods which will be used to produce it.

o Describe the common objectives of the participants.

The MEDL-R processor has been developed and implemented in order to assist

the requirements analyst in the nroduction of documents of consistently high

quality and reliabilitv.

As the motive behind the design and development of a system, it is impera-

tive that requirements be accurately recorded in a malleable data base. Due

to the evolutionarv nature of the software development cycle, the MEDL-R

processor employs a (malleable) data base that readily lends itself to the

changes which are an inevitable by-product of an iterative process.

A more complex problem is that of providing a "mapping" scheme which

allows traceability from requirements to modules. The MEDL-R processor

addresses this problem via a requirements "taxonomy" through which an attempt

is made to identify and classify pertinent characteristics.

MEDL-R addresses the problems of incompleteness and ambiguity by requir-

ing the user to impose successively greater degrees of formalism and clarity

upon the problem statement. MEDL-R then, bv asking the user to respond to a

few "rigorous" questions and by allowing the user to respond to other (less

rigorous) questions in a relatively "free-form" manner, gradually leads the

15

user into i,!Iposing uisn ipl jim upon t ,c d eni, U'r ,,r c

The r-al-world model upon which MIEDI.-R is IbNs ed is realty rath,,r i:nplI-

Requirements exist and thus may be categorized. 'Iis cat,:eorizatit:-

accomplished via three (primary) aspects:

o The nature of a requirement,

o Its motivation, and

o Its general subject matter.

The nature aspect identifies the most general characteristic(s) ii a

requirement in terms of how it came about, or how it impacts the systet L' !;C

designed.

Motivation allows the user to (simply) state the reason(s) why a

requirement is under consideration.

o The subject aspect allows the user to specify (and thus highlight)

the key words of the requirement in the jargon of the target system.

One of the more important objectives of MEDL-R is that it facilitate

design as a process and aid in the transition from requirements-definition to

a top-level design. This facet is accommodated via a mechanism which in2 ;,d

to describe the resolution of a requirement. The resolution of a reqtir :!,tt

is not only a means of further categorization, it carries with it a strnm'ev

design connotation and allows a clearer expression of an abstract (as vet)

concept. It is a means of identifying design components which will be rcduced

to:

o A function

o A data entity, or

o A system resource.

16

As may be seen, ME)IL-R relies heavily upon the use of key words to

simplify and clarify the repr,-seutation of requirements. Each MEDL-R key word

provides an aspect of claracterization or a criterion subset that is associated

with a given requirement and implicitly relates common requirements. Thus,

all requirements that are of nature procedural would be (implicitly) related.

MEDL-R provides the user with a wide variety of requirement interrelation-

ships which may be used to produce various reports. A requirement may be

"decomposed" into logical sections as shown below:

Identification and

Characteristics

Tracing

Resolution

The identification and characteristics section provides each requirement

with a unique number (ID) and allows the user to provide descriptive (and

characterizing) information about that requirement.

The tracing section provides the user with the ability to trace the

history of a requirement in terms of succession and the decomposition of a

complex requirement into smaller, clearer components.

The resolution section contains statements that achieve the "mapping"

from the MEDL-R to MEDL-D data base.

MEDL-R is thus the initial software tool of the TSD Methodology. MEDL-R

responds to the critical objective of requirements specification and assess-

ment. Specification is enabled by a unique high order language whose elements

are processed and retained in a relational data base. Assessment techniques

access this data base and produce information about the requirements statement.

17

The MEDL-R system is intended for use throujhout a sVst em developmelt

life evc . It can be used to capture initial requirements, it supports

detailCil requirements and iterative refinL'Cnt f constraints, and it supports

mana gement control and traceability functions. For iiih i]eV] design, it can

!;e tuse-d to help develop the overall design structure. Even during later

development phases when detailed design is underway, the MEDL-R scheme is

useful for relating requirements to components and checking interfaces.

The retention of requirements in a malleable data base structure is a

key factor of this approach. Not only can all requirement interrelationships

and dependencies be retained, but all versions, updates, supercessions and

obsolete items can be "archived," activated, processed, summarized or analyzed

using the features and commands of the MEDL-R support software.

This package is an interactive tool built and used in the environment

of a software engineering facility. As such, it is accessed through a terminal

by a cognizant requirements analyst, systems designer or manager. Initial

creation of the fundamental requirements data base is onlv a very small part

of the requirements definition and assessment task. It is the subsequent

refinement, revision, expansion and accommodation of new and changing require-

ments that has been so burdensome in the past. MEDL-R attacks this problem

along with providing evaluation techniques which produce analyst feedback for

assessing the impacts brought on by the variable nature of a requirements set.

The MEDL-R software system is composed of several subsystems as shown in

Figure 5. The interface package handles general system access and user inter-

action through a series of directives which determines the subsequent tasks

to be done. The six major subsystems of MEDL-R are:

o CREATE - The Create process is used to generate the requirements

source file through a "template" generation process in which the

18

user fills in a blank area in a template. Figure 4 shows the

MEDL-R statement list. The file resulting from the Create

process is passed to the Language Processor for creating the

actual requirements data base.

REOUIREMENT SUBJECT

DESCRIPTION EXPLANATION

NATURE STATUS

CONSTRAINT REPLACES

SUBSYSTEM REPLACED-BY

SCOPE DERIVES

VERSION DERIVED-FROM

SOURCE ORIGINATOR FUNCTION-RESOLUTION

RESULTING-FROM DATA-RESOLUTION

RESPONSIBILITY RESOURCE-RESOLUTION

Figure 4. MEDL-R Statement List Prompts

o UPDATE - Update allows the operator to update the existing

system. Update operations include changing any user entered

fields of an existing requirement, changing a requirement name

or system name, and adding all new requirements to the existing

system. The file resulting from the update process is passed

to the Language Processor for creating the actual requirements

data base.

o TRANSLATE - The Translator takes a file from the Create or Update

process and enters a totally automatic data base build or update

process.

19

C:L C

CD.

1.1

o OUERY - The primary purpose of the Ouery subsystem is to provide

the MEDL-R user with a means of extracting from a MEDL-R data

base some subset of the information contained. Through this

facility, the user can form clusters, eliminating the need to

sort through an entire requirements statement to find those

requirements that are of interest to a particular user.

o ANALYZER - The Analyzer subsystem allows the user to list

requirements that are in the data base, either singly or the

entire requirements expression; to summarize the information

in the data base in a tabular format; to build the Formatted

Requirements Statement; and to obtain various measurements of

what the requirements expression contains.

o METRIC - The Metric subsystem also provides analytic measures

of a data base, but differs from the Analyzer subsystem in

that the Metric subsystem executes as a two-step process the

Extract transformation routines and the Graph Analysis Proc-

essing (GAPS) routines. EXTRACT converts selected require-

ments data base information into a tree structure of graph

nodes and links, which becomes the basis for subsequent

analysis. The GAPS package is explained further in another

section.

3.2-2 MEDL-D

MEDL-D is part of the MEDSys and is intended to be used for

describing systems design in conjunction with a preceding requirements

level (MEDL-R). However, it can be used independently of any of the other

MEDSys levels.

21

The link from MEDL-D to MEDI.-R occurs through the us;e of common subsys-

tem, function and data names. MEDL-D contains statements that trace a design

component back to the requirement in MEDL-R from which the design was generated.

A "complete" requirement in MEDL-R (i.e., one whose resolution is specified

because of the amount of detail) provides a link to the design phase (and

MEDL-D) because resolution occurs in the following categories:

o Function resolution - do something.

o Data resolution - use something.

o Resource resolution - occupy something.

Design is recognized as an iterative process of imparting successively

greater degrees of procedure or behavior on a structure base. The structure

is evolved from the requirements during the initial design activity. >IEDL-D

is primarily oriented to capturing system structure while secondarilv oriented

to providing the basics of procedure.

The two categories of components in MEDL-D are:

o Functional objects - considered to have certain characteristics

called properties; and

o Data objects - considered to have certain characteristics called

attributes.

Figure 6 shows that functional objects are related to data objects by an

"action" which represents the "use" concept. MEDL-D allows hierarchical

definitions for functional decomposition and data structuring. The capability

to specify discrete scheduling and timing information is contained within the

functional specification and is called the functional "control."

3.2.3 MEDL-P, MEDL-X

MEDL-P, the "procedure" phase of the Multi-Level Expression Design

22

__ __ _--_ _

,

2Attributes Properties

Hierarchy._ Data' Action unction Ato

Objects Relationships Objects
U

a- ata Function" , R s o u c s/ , R
Res urces Resources

Residency % %
Occupancy /

Requirement

Figure 6 Design Level Model

23

System and MEDL-X, the document. generarioi pliaso ! r. SLi]] u -der developm, ,nt

3.2.4 GAPS

The Graph Analysis Processing Sst;t.: (.\) ha: '-.<n referenced under

the Metric subsystem of the MIEI)l.-R software system. To reiterate, the -X'lUAC!

process of the Metric subsystem converts selected requirements data base infor-

mation into a tree structure of graph nodes and links, which in turn is capable

of being analyzed by the GAPS package.

As an overview, a relationship is defined for any two requirements having

the same 'NATURE,' 'S'BJECT,' 'MOTIVATION,' or ' FUNCTION,' 'DATA' or ' RES(dP(T

RESOLUTION. The count of the number of identical relationships that exist

between two requirements becomes the link bttween the two requirements. ihe

link is represented in the GAPS matrix. GAPS has comnands to transform the

input graph matrix in the following waNs:

o Adjacency Matrix

o Distance Matrix

o Sequenced Matrix

Other program features include a clu;terin algorithm to determine parti-

tions of the sequenced-distance matrix and a command to eval at c a raph

partitioning by computing a strength and couplin g measure. Another i,t ion

allows computation of a set of stat ist ics at iny point . :,e ,tat is Lics

include measures of node connectivity and dispirity- as we!l I a.s oecral I rapo

values for centralitv, radius and distance. ('oPimands are alsOi i a , t

print the current matrix .and SAVF/RESTION U the current matri:,i.

GAPS provides a tool to graphicallv analze rcquir cme"ts dks'r iption.

Analysis includes an attempt to address the problems of r, iab ilit\ and

maintainability of the syvstem I% methods wh i ! prt-sent and emp]hasi;e i l-,rip!:

24

nodes of maximum potential improvement. CAPS can focus its analysis on indi-

vidual nodes or thle total network Structure.

I (\mjjrK iv ComutcrXot\ork MIodeliilg (CC.NN)

Computer niet,,orks of both general -purpose and special ized conf igurat ion.;

are?, -r are hecomini , part of eve rv major electronic system being proposed or

deve loped. [te requ ir(-mcnt for these mu iCOMPulter configurations is being

Cnfera ted bY hot .1 t Cohn i cal and economic p~ressu res. The technical User is

requiring greater compUt inop capahil itv app] fed to broader areas of use with

higher rel iahi I itv . Lcoom m rep;li rues that thre user spend on]%v what is neces-

Sa r %, to Solve the immed ia t ' prolhi on and on~v allo1w0s for expansion c apa hi 1i t

that i s mod uIa r a nd I)urchI asa h 1 c %,h en nieed ed. CCN>1 is an interact ive network

mo,)delI i up tool d~s i:4nodL'C to he rCeept ye to iterative design and ana lvsis tech-

n iqts .Althou01gh imp le-Mentat ion is niot complete, CCNM repi esents one of the

t vpes of s imulIat ion to'As considered necessary for the system design process.

lIhe ph i I oSOPh1V Used inl as seLmh I i n~g thre CCNM ;\sst em is to invest igate ,

doet a i 1 and iMp) I LTo It anl exper iment La I network des i go accord ing to thle l evel

s truc t ire ini al Ic I .Ibis level struc ture provides the capability to model

nL'e%,')rks, at a variet,,; of levels and Ln increase specific details a.; more of

the o iarIc ter ist ic s are defined.

When the CC(N' yse is operational as described, it will contii. :0 to

vv0e av longL as neUw Compuiter systems, line types, networking algorithms

prot oco-s, fli my control , rotin gl and analyvsis and opt im izat ion algor ithlms

cme a hm t auid are a hsnrh bed in thle CCX>! data ha se. It is important to point

utt that, as, ,n(rc networks art, model ed, Simulated %nd validated using the CCX>!

:- n*the daita !base of node; and 1link.,, wil I I row rapid lv. until thle most-

ot,-i ~ocI prmm;.' sor, anid !standard Ilint, tvpes are- val idated and preseLrved

to be used by any future network possessing those elements. It is evident

that development time for the creation of network simulation models will

become drastically reduced, especially at the hi,,her levels.

Table 1. Comprehensive Computer Network Model (CCNM) - Level Structure

Level

1. Node Linkage, Node ID, Line ID, Graphic I/O: Use only standard model

available from model library. All variables assumed.

2. Modification of Standard Models: Node, multinode, lines, environment,

security, failure options.

3. Alternative Model Call Up: Node, multinode, lines, environment, sec-

urity, failure actions, control algorithms.

4. Build Models: Language selection, framework with fill in, syntax
linkage validator, library access and deletion.

5. Abstract Models (FORTRAN and/or assembly language).

6. Macro Level: Macro encoding, code entrance, data entrance, trace and

timekeeping-enabled.

All Interactive or batch linkable to all levels.

NOTE: Each increasing level represents greater model detail.

3.4 Non-Automated Tools/Procedures

There are a number of procedures which also support TSD. These procedures

are not automated and serve primarily as documentation tools, allowing the

system analyst to express his thoughts and ideas in a form which allows him

and others to view and understand them.

Two of the procedures and notations which are notable address the func-

26

i- . - E . .

tional definition otf tlie system. They ar' dc-i. , 'd''' ,

express tunctional relationslips in a graphic a, hk: twc f oind

useful art data fLv,I diagrams as defined IK: YoArd.,i,, fn. . ,

designed by 'tR.

3.'1.1 Data Flow Diz_$_rams

Data flow diagrams (1) (DFD) are used to represent a ,';,teru , , .

ally, thus reducing the amount of narrative needed. A P ID i a t,.V,

representation of a system. '[he system may be automated, manuaI or k

The DFD portrays the system in terms of its component pieces wit!1 a! -

faces among the components indicated. A DFD does not represent the fltu .

control or the order of processing. Numbers used on the diagrams ai-L,

identification purposes only. Data flow diagrams are made up of four ia-

elements:

(1) Data flows, represented by named vectors, are pipelines

through which packets of information of known composition [',..

(2) Processes, represented by bubbles, are transformations of

incoming data flow(s) into outgoing data flow(s). Each

process bubble needs a descriptive name.

(3) Files, represented by two straight horizontal lines, are

temporary repositories of data and may consist af tapts,

discs, card sets, index files or data bases.

(4) Data sources and sinks, represented by boxes, are persons

or organizations lying outside the context of a system, thiat

are net originators or receivers of system data. A source

(1) Tom DeMarco, Structured Analysis and System Specfication, Nex. sr ;

Yourdon, 1978.

27

b)o - e: s t s I 1 1 t L) pro" W de c ooa!7, 1 t, r V tt

[)a L a f Lo%, d iag rac a r, exIpreSse Cd in I I s. r 1-:ir t lov ,2V c I tI e

Context Diagram and shtown iin 1igure 7, port rays" anl oi'. ra: I Ip) rturet a!t o the

svs torn w ,ithI fet r SU b)SVs t CMs - hI n he1(-1 s;U are I a b) l 1ed I t It'oe 01,01 . Ir il

svs ;tems, are broken dotni in separate DI) s and further tIe 5cr fhd 11s sIljo%,n if

Figure 8. 1The com,.ponent s o f thle f irst 'SuL1)SyVSt em a re I aLe ed I I I, ..,.3, etc.

Mhen a subsystem has been decomposed to as simple a form as nects-arv, it is

called a functional)rimitive.

There are miany advantages to using ievdled data flow diac,,rams . Thre,.

allow a top-down approach to anal vs is. Bv read ing the topl fe levels one can

get the big picture or one can begin with the abstract and go,(to the detailed

and narrow in on particlar are'as of intereSt. Each page is a complete presenta-

tion of the area of tack allocated to it. All diagrams can be restricted to

81!x 11 inch paper.

The second part of the sys,-tem Funct ionai defini tion consists of the minli-

specifications which are' concise descriptions of the. b-ottom-level hbV'lus

(functional primit iv's) . Each mini-spec dlescribes rules governini: transforma-

t ion of data fwsarrivinig at the associated primi tive into data flows,

leaving it. An example minii-spec is shown in fable 2.

To augment the data flow d iagram, there is an ent it v called the 'a:t a

Dict ionary. Ibis contains rigorous clef mlit ions (It all data Ilx , iaccaM

elements such as dlata flows, components Of data flows, fiean(! pra)csses10.

Thle SCe fin itions relate al1l data el1ement.-s through seqIIleC e (, Se IC't ion or

iteration. The Data D~ict ionary' appears in 'ablle 3.

28

V)

C:
0

<V La

(V C:

-~ - 0

0~(. V) r> c

E ZV

CDC

C: c

V) CD

C:29

ata

E (E

m toE
CD _0

0

C', - (

CLwE

ia-
- :E'E

C 0 D

coo

00

CC7,

a) (V3a

Table 2. System Modeling Mini-Spec

1.1 Subdivide Syste,

IF model-information includes gate-level-model-needed

THEN

using system-block-diagram

partition system into logical functional blocks

define system-boundaries as internal-interfaces and

external-interfaces as functional-blocks

ELSE

system boundaries are external-interface and functional-block

ENDIF

1.2 Produce Gate-Level Model

IF model-information is gate-level-model-needed then

FOR each functional-block in the system-boundaries do

FROM system-logic-diagrams produce block-gate-model

TRANSLATE block-gate-model into executable-emklation-code

ENDDO

ASSEMBLE all execution-emulation-code into gate-level-model

ENDIF

1.3 Produce Functional Model

For each functional-block in the system-boundaries do

From the system-functional-description produce block-functional-

model and interface-behavior-model

TRANSLATE block-functional-model to executable-simulation-code

PRODUCE code-generator-description from system-functional-

31

Vi

-ii-- -

fable 2 continu,21c)

,tescr iot ip n

p EN I)!

Assemble all execuable-asimulatio:t-ccde into funct lonal -level -model

1.4 Define Model Specifics

IF model-type-needed includes gate-level-model

THEN

model-information = gate-level-model-needed and model-

subdivision-needed

ELSE

model-information = monolithic-model-needed

ENDIF

1.5 Produce Model Interconnection

For each of the system-boundaries

Define boundary-information

1.6 Produce Loadable Software

For each module of test-software do:

Using the code-generator-description as one input, translate the

test-software to machine-object-code and generate symbol-tables

ENDDO

Link all machine-object-code modules into loadable-software

1.7 Produce Environmental Model

From the system-environment-description produce environment-model-

description. Translate environment-model-description to

executable-environment-model

32

Table 3. Data Dictionary

SOptional; [jb Ie] alternatives;~ iterations of; + and

analysis results [per formance-measuresl reliability-numbersi failure-effects-

results]

data-desired = [number-of-samples-necessary + type-data-necessary + type-of

failures-desired + Idesired-failure-distribution} I type-

data-necessary] + specific-system-portion-of-interest

data-recording-directives = data-to-be-gathered + [time-intervall time

event] + output-device + output-format

faults-to-be-inserted = location-of-fault + time-of-fault + duration-of-

fault + effect-of-fault

functional-level-model = functional-level-simulation-code + functional-level-

symbol-table

gate-level-model = gate-type-tables + gate-interconnection-tables + gate-

symbol-table

loadable-software = {machine-object-code + symbol-tablet

model-information = [gate-level-model-neededj model-subdivision-needed I
monolithic-model-needed]

model-type-needed = functional-model-needed + (gate-level-model-needed)

system-boundaries = functional-blocks + {internal-interfacesl + external-
interfaces

system-model = environmental-model + functional-level-model + (gate-level-

model) + boundary-information

test-directives - jfaults-to-be-inserted + environmental-model-directives

+ test-conduct-directives

test-system-definition = system-environmental-description + (system-logic-

diagrams) = system-functional-description + test-software +

system-block-diagram

33

an

Table 3 (continued)

type-data-necessary (gate-performance) - (functional-element-performance) +

(environmental-model-performance) + (test-driving-factors)

type-results-needed = [performance-characteristicsI failure-effects-analysis

reliabilitv-number] + specific-system-portion-of-interest

3.4.2 N2 Charts

The N2 Chart provides a structured method for the definition of func-

tional interactions and interfaces. The chart itself is a graphical presenta-

tion of all of the functions within a system (subsystem, task, etc.), together

with the one-way interactions between each of these functions ordered in a

fixed coordinate matrix format. The chart gets its name from the fact that for

N functions there are N squared intersections or squares on the diagram, each

of which may contain a function or function interface. The number of possible

interfaces for the system is equal to N2 - N, where N is the number of func-

tions within the system. Since both functions and function interfaces occupy

a square of the diagram, the total number of squares graphically illustrated

is equal to the square of the number of functions involved.

Figure 9 illustrates a simplified N2 Chart which contains all system

functions (F1 through F4) on the diagonal axis and all system internal func-

tions. The square labeled F - F for example, represents the one-way inter-

face between function 1 (output) and function 4 (input). All function outputs

are defined in the squares which are in the horizontal row of the function,

while all function inputs are defined in the squares which are in the vertical

column of the function. External inputs and outputs are defined on the top

and bottom areas and the side areas respectively. The system illustrated in

34

Figure 9 has twe vxterncl ti I Il(t 1') L 'd t (' .xternal mt, Its (frm

SF1 and " d . One of the pr im r'V puI, . w tht 7 Chart is ;-o iidicate where

interact ious and interface:, d_(.h t o ,:.,t In Ii. ;ure 9, the squares blm.: and

to the right of function 3 are emptyN, indi at ing thot there are no interfaces

between functions F3 and F4 'I'he table at the bottom of the figure defines
3

tihe basic rules for the N- Chart.

Figure 10 illustrates the "arrow" and "circle arrow" formats which pro-

vide a clearer visual presentation of interface direction and flow., These

format types have been the most useful in the presentation of higher-level

design descriptions to a general audience.
9

N Charts are defined loosely enoug h to make them useful*for a number of

different applications. One of the primary benefits in terms of functional

analysis is their graphic display of interfaces (and hence some measure of

interfunctional coupling). This allows determining reasonable functional

grouping as illustrated in Figures 11 and 12.

The N2 Chart can also be a helpful tool in functionally grouping a given

system into easily implementable units or program elements. Figure 12 provides

,2
an example of the use of an % Chart to group detailed functions into effec-

tively implementable hardware and/or software elements. Figure 12A shows the

result of the detailed functional analysis activity. The dotted lines around

the functional groupings of this figure show the initial function collection

operation. Figure 12B shows the final implementation functional allocation,

which follows the interface minimization grouping of the previous figure.

3.5 Other Tools

There are several other tools which support system design but have less

general widespread applicability and are hence used on an ad hoc basis.

35

I ~ i ..

Input-I
Function I 1

Output 1 Fl..*F 2 F1, F3 F1 - F4 1
(F) I

I Function I
F 2-,. F, 2 F2-' F3 F2 F4I (F2I I I

Function
F 3

F3 .. F1 3 2 (F
(F~31 I

Function

I 4 F 21 F4 F2 4 OutputI I (F4)

L LW 4

t
Input

Basic N2 Chart Rules

*AII Functions Are On The Diagonal

*AII Outputs Are Horizontal (Left Or Right)

0AII Inputs Are Vertical (Up Or DoNn)

0AII Non-Function Squares Define One-Way
Interfaces Between The Associated Functions
I

2
Figure 9 The N Chart

36

]I

Line Arrow
Format.

F 2

F3

F 4
Circle Arrow Form3t

2

Figure 10 N2 Chart Arrow Formats

37

FiO
F0

Figure 11A Fninial Function Organization

02Q 00O

10q F4

F5Q

0 F60 01
0I 1

LOOFOO

Figure 12A Original Function Diagram

BF A C F1
FD F 6P F - F F7. And F

Figure 12B Final Implementation Diagram

3q

Examp les)t t~ lit ill lude :-Il nt i :I t ''t '', t-.lCJ -t "id'' issu(a;,

ana I't i "a 1 t k Ii i t, :I!I,! th I ' 1 1, cmi a t c I a at I ae nt ja 1 c 1'-, w~h i chI

hcars more detailed Y 1'1i.1 t 0t1 CI- P Irtif, L :1 C f~ I' U a 311 i C ltv.

Fie kev h enief it of em~I lat it i. h at it ptov idt s -I ver;' detai led model

of a p iec e of hard\warc %w:it I i a much sma I IC kr at'IOun t of ve(-r) I lad thI an a c omparab le

s imu La t i on. "This model hL-1C' ttend';, to executet faster than a comparable simu-

laion iOut ;t ill rt'tains tilt Flexihil it v (mod if iabil ity) of softwart,.):or

manv svystfLms, however, th lti 5>1115 doni't relate to '.4iltlt'r tile !tardw,,are will do

the job or not , the; relitO Miore L" l1ow the vdArIous piCC leces ilouldl he connected .

Teeare, t he network l sut> ;wddrt -' d v (WNM . L'n]ess verv' stringent real

time considt<rat ions are involved or serious form, fit and funct ion constraints

are, inlpo -' d , t he dt -tai I od 1 aixwa rt / sof 'ware t radee l f- w'.i ic h emnulation can pro-

vide art, not Ot0osav.l'- of e-mu-lat ion also requ ires ver V detai led definition

of the' hardware and soft wat' illV,! Ve'd (w ,i t is5 thet exnc7t code).

Fis anoinL t dl.tai I i- Often not ava jiable unt il late in the design cycle

whe n the ird. t ' -O wart' t rad e studv, iss-,ues lave alIread v b)eun resolved.

Af ter accept itil thlat emulation is not universal lx' appi icale to system

desi,,n, it is, propcir to consider when emulat ion is an1 absolute neOcessity in

system de'sil'nT. A'- ,nt ined 'efore, 1,ardware''softvare tradeoffs for specif ic

SijIo I 'lt , ,' a real t ine xsc re()tirt' tile flexibil it v of emulation to prov'ideO

(Itant itat ivc is~t' t' perti mance atid t n)lu~(1t-5t lns. tbooln iss Tes Stii is

."ihtandtPoe constraint,, arte important , emiulat iotn will ai'ain prov ide a

per formance t- capal -i I i t' tradeoff abil ity. For a ketnU1a dt'Ve1 T)O P't , eMUlIat Ionfl

i perhapsL th'l 0tt);' solution when the mac'i int for '.'l ih development is being

;irrit iit i, not available or cannot support tl10 pt' r ipheral. 1and0 s-st em

soft wart- t'et'sar. on its own. 'Fit' ma i'm poitnt to 11C 'aidedl is that s\'stems

that contain this kind of constraint are only a small part of the total world

of systems. In short, emulation is not always useful, but when it is needed,

it is often the only viable solution.

There are a number of software tools supporting these other methods.

For example, in the area of simulation, there are a number of supported simu-

lation languages such as .PSS, SIMSCRIPT and SIMULA as well as the standard

languages like FORTRAN, PL/1 and ALGOL which are also usable for developing

simulation. The specifics of each simulation, the choice of language and

support machine, depend on the problem being addressed and are very much

application specific.

For emulation, the support tools are not so prolific. Microcode develop-

ment tools are emulation support machine dependant and vary from manufacturer

to manufacturer. For translating the target software, there are several meta

assemblers available. The most used meta assembler at Martin Marietta is

the one produced by MacDonnell Douglas for NASA. This meta assembler allows

the user to describe the instruction set and formats for the target machine

and this description causes the assembler to recognize and translate the

assembly language of the described machine.

Since the other tools are not universally applicable to system develop-

ment, detailed descriptions of them are not included.

41

I I 11 t I- dLI t Li Oil

,<:.i l thc icu. ls . ~id~c r L'c:

it sc. c>su\'to i.,,u-:' n~x':o-t Iiicr rt)nt purr- '0 ur1:1Fi' 1

is the pui losoph ': and c u.ept j [42 ij udOtIcSurjj' tile tools >'p-

porting the methodology. The tools aire important in relation to how.. ..ell tU~

s-upport the phiiosopliv andl ho%. miich capabilitv thev ailo.:. _olads uiiu

their nature rL'Strict the desioner or iorce bin in a direction he doesn't

,.ant to take are not ont v undesirah1c, but potunt caiiv dangerous to tlue sufc~ss

of tue design process.> bIus, toco I s,1lcct ion and use :nust be acconc ip.:F..ed in

a judicious manner totallY wiAtin the context of7 the underlyin,2 pinilosocux,

of the design methodolog y hein- pursued. W,%ith that ca,:eat, tis section

addresses a syst em design scenario, identifying the tools whichi could hoc us,_

and the points in the process when. those tools come into nplo;. Figure 2,

presented earlier, w-ill provide tu e focus for this discussion,-.

.2 P~roosal

Tlie activitiles shown on Figure _2 sn-ich are Prior to '.h-e A uthorization t.o

?roceed (ATP) represent the initial involvement with the system bneing designed.

*LIhis includes the customer's initial development of the system concepts and

preparation of the procurement package which begins the process. After

receipt of the procurement package, the first ma~or involvement in the proce'ss

starts w.,ith th ,e proposal -reparation in response to the Request for Proposal

(~R-1)

Proposal preparation includes the preliminary analysis of the functions

the svstem is to perform. Due to the very short respocnse times on RFPs,

t"is analvsis cannot be to the detail that later analvses will be. Hovo>\er,

t it i [!I ti~ 6c "It c>x t ,' ut t I li !. :t .;] " [tr i i !.1) - rti t t ~ ,':t,.

sit iliL look IikL, tih ir ", l tr" I ,.' ' l,, it, i illIi iit

di I w t I 1 i i1i ti t r...- c pocif i i it a jr:l imi narv ,Ia-

n i L icn of t Ie no Jor hirdl-ark find ptt i , rompont K roposted. Since tn,,

methodo logv attempts to delav premature decisions concerning the implementa-

tion of the system, this is clearly not a logical time to define the hardwair.

and software components. However, the real world situation forces thi pre---

maturity due to the current policies concerning system procurement, particti-

larly the proposal evaluation process and the emphasis it places on showing

understanding through the proposing of a solution. 'Ihe real world thus con-

strains the methodolop,. The major saving grace of the system is that later

stages of the development .:ill revisit the decisions made in the proposal

preparation and will either validate those decisions or revise them approp-

riately.

The tools most useful for proposal preparation are the requirements

analysis tools (e.g. , .i.DL-R) , the non-automated tools which aid in the

functional decomposition (e.g., Data Flow Diagrams, N2 Charts) and ad hoc

simulation to aid trade studies. The requirements analysis tools allow the

manipulation, grouping and categorization of requirements. This is represented

by the separation of requirements into functional and other categories so

that functional decomposition can focus on what the system is to do without

having to consider inappropriate constraints. Through the use of data flow

diagrams and/or N2 charts, the functional requirements are further categorized

into major subfunctions and then into more detail until primitive functions

are described. Primitive, as used in this context, is a relative term. The

extent to which the subdivision process proceeds is dependent on two primary

43

factors. Ihe first is the)udgtMent of u-I sst':n aim I that the prinitive

f unc tions he has developed meet tC.k in t let d s0a " C;il ICt I0,'a I de(;PIpos it ion

understandnbil i ty an-1 realizabil tv. ihe second factOr detrmiining. the decompo-

sition stopping point is time. Time is often a factor in nroposal efforts and

limits the degree of iteration possible.

Once the system has been defined functionally, alternative methods must

be developed for performing those functions. At this point the requirements

tool becomes important again. The requirements are again categorized, but

this time the categorization is by function. This catcgorization includes

not only the functional requirements (which after all caused the functions to

be defined) but also the performance requirements and other constraints. This

provides a bound on the implementation possibilities of the system. The

result of the categorization is a function by function performance definition.

The next step is to determine the inherent parallelism between the

functions. This task includes defining what steps must be performed before

what other steps, and which steps are independent and may go on in parallel.

If N2 charts were used in the decomposition process, these same charts may be

reoriented to show time sequencing. Data flow diagrams, by their nature,

assume a parallel system and are not oriented to showing time specifically.

Thus, they are not useful for this step. Another manual tool which might aid

this process is some variation on Petri Nets.

Once the basic functions of the system are defined, characterized in terms

of performance and placed within the overall sequencing pattern of the system,

implementation of the functions can be considered. ln defining the implemen-

tation, the possibility of grouping sequential functions or of multiprogramming

parallel functions, of distributing the functions and of providing a single

44

processor to cover all functions must be traded off against the otilher g;-n-

eral requirements such as cost, reliability, maintainability, power consump-

tion, size, weight, etc. For these trade studies, ad hoc simulations, papler

and computer based analyses (for reliability, for example) and engineering

judgment will develop one potential, viable candidate solution which will

then be documented in the proposal.

The requirements, the functional decomposition and allocation of require-

ments to those functions and the candidate solution will make up the proposal

and the proposed system level or A-level specification.

4.3 Functional Baseline

After contract award and the Authorization to Proceed, the primary

emphasis is on developing a system functional baseline or a logical model o-

what the system is to do. The effort expended in the proposal preparition

will serve to provide a starting point for this process. tfowever, durinn

this phase of the contract, more time and effort will go into devel,,ping, a

validated functional baseline. The useful tools for this process, which

represents the analysis phase described in Section 2, are the same tools

which were useful in the proposal development stage.

The first step, automation of requirements or the entering of the require-

ments into a data base, has already been done in the proposal effort. The

requirement changes, additions and deletions which always develop are added

in at this point. In addition, the requirement derivation process, under-

standing and documenting the requirement level consequences and implications

of the imposed requirements, has begun in earnest. The requi remit t st is

continually reviewed and analyzed, often usilig, automated metric tool s, for

completeness and consistency. Caps which are not fillable 1w derived require-

t

ments are filled by assumed requirements which must be noted and coordinated

with the customer. This requirements analysis process continues through the

development effort and provides a viable mechanism for traceability and study

of ramifications of requirement changes. Requirements tools, such as MEDL-R,

will aid immensely in this effort.

The emphasis put on requirements at this stage is not surprising since

the methodology is intended to develop svstem solutions based on the system

requirements. It is very important to ensure requirement traceability to

accommodate requirement changes later in the cycle.

Concurrent with the general requirement analysis described above, the

functional decomposition process described briefly in the proposal section

is accomplished. This process deals exclusively with the functional system

requirements, those imposed and derived and those developed as a result of

the mission analysis. Mission analysis provides details concerning the use

of the system in an operational environment. The operations concept should

be a part of the imposed requirements given in the statement of work or system

specification but there is a possibility that the analvsis of the system

mission will result in some new functional and performance requirements.

This analysis also serves to validate the imposed and derived requirements

in terms of necessity to accomplish the system's operational purpose. This

could be thought of as assigning a kind of priority to requirements, giving

those that don't contribute to mission accomplishment a lower priority than

those that do contribute.

The functional analysis consists of the functional decomposition process

decribfd in the proposal section. This process is aided by manual techni-

juus uch as data flow diagrams or N- charts. Since iteration is now a much

-- WN

morc v jablo o, lt'' o in r~c iyn i

kli I ! prove I c ij iii.)0 s S I IC I as (;A.J'f (closcr ib I), r i,

wh ic C1aid inl Lhk q Lil 11t F C tLi 1! a r ve2r % ie Iu ~ * u

resuLt of functional decompositionl, concept'; such Ili Lt rcdl) In o Ii

Will allOW ZI nuLMber to be issigned to a given partitioning.

Strengthi, or cohiesin as it is often called, represenc.s t he ~c

loit r faces, hoe' i L1c1t 0 var ions por tions of a func tion ho I .t . <

an Wdeal i zed l) oin1t o0 V I c', t he best part i t inning resulit s ini con, I is toL t oc -

t inns. Whose compponeunts, are groupod together because oY fuiict iowa (ALIjtn 1-tm,;

logical , t ompora I or coincidental) reasons. That is., echd......p

pieces contributes to the one function rather than having, hue 'rolJ ' !

"functional" block because they do the same sort of thingp ti' it

differently (lo,,ical) or they, do a set of things in the samek iii i pei -r

(temporal, iniitial ization is a good example) or they, are ,it ' uo i

apparent reason (en inc id entat) StrentLh may be swomewhin t di ft i1 LI

quantify biut a good f irst cut is to assig n a value %.hI oh pre,< p,.

t ioied to thow number of dif ferent things a given funct i oiio 1

(:ouphliii, or the initorfUinctional interfaces, is m(Irc en- , i I 1, in II

Coup Li a, repru-sents the complexity or number of jintIrfaieL. thI OL111lorii.:'

t ion.s. The dhesire is to minimize- coupling so that ea'K,,:!

inidependenit . ihis corresponds to the software conIcepIt ') 'ill~t.0 .. *;

To analvyze the "goodness"' of a given part ion ing ap ntot* r ' i: t

both the strength and coupling must be calculated. S 4 ci th oh,)1, 1,ti

maximitze strength and minimize the coupling, the ratito or i:.reitp' h~ci~ ijlo

gives a quantitative indicat ion of hows good a fUn1CtiIi)malpi i 1 '..

better part it ioning Wi.l 1 have a higher number than a pno.i. . r~

47

partitionings are proposed until the analyvst is c w trt:bl with one and the

assessment process indicates that it i, as good or hetter than the others

proposed.

Once a functional decomposition is arriv:d at, the performance requirements

are assigned to each function. The functional requirements are also assigned

to the functions but this happens as the decomposition proceeds since the

functional requirements dictate the decomposition components. The result of

this process, which is accomplished using a requirements tool, is the system

functional baseline. The functional baseline describes the basic functions of

the system, the interfaces between functions and the constraints in terms of

performance for each function. One additional step is accomplished prior to

the System Requirements Review, which marks the end of the Analysis Phase.

This step is the allocation of the various functions to hardware, software

and human elements. As mentioned before, this allocation is project-dependent

but it serves to bound the extent of automation within the system. This allo-

cation is aided by guidelines and trade studies to provide the most logical

breakdown.

4.4 Allocated Baseline

The allocated baseline represents the top-level system definition.

Development of the allocated baseline is driven by the functional baseline,

including the performance constraints. At this stage, potential solutions

are proposed and evaluated. It is significant that the consideration of

physical solutions is not undertaken until after the System Requirements Review

(SRR) during which the system functional baseline is presented and agreement

by both sides is sought on the total system requirements. Development of the

allocated baseline and the subsystem design which follows it represent the

48

I
synthesis phase of the development.

The definition of candidate solutions to the functional baseline is

currently highly dependent on the experience and background of the system

designer. There are no tools which will take the functional model, constrained

by the performance requirements, and magically produce the proper mix of hard-

ware, software and human elements to accomplish those functions. However,

there are a number of tools which will aid in evaluating proposed candidates

to determine their fitness for the problem. This section will therefore con-

centrate on the evaluation process rather than the system solution proposal

process.

There are several ways of guiding the development of potential solutions.

The first are the imposed system constraints. For example, requirements for

reliability, survivability, availability, fault tolerance, ruggedization, size,

power consumption, weight, etc., will serve to bound the potential solutions.

The second aid to the system designer is the determination of parallelism in

the problem. This determination is made by examining the system functions

and determining the sequencing and order independence of each of the functions.

N2 charts are adaptable enough to aid this process and show the order of exe-

cution of functions. Data flow diagrams, which assume parallelism of the func-

tions and do not provide a mechanism for describing sequencing or control, are

not useful for this task. Variations on Petri nets, with their strong empha-

sis on sequencing, are another possible tool to aid this analysis.

Regardless of the specific tools used to bound the solution space, the

next step is to propose and evaluate potential solutions. The evaluation

process is aided in a number of ways by manual and automated tools. For man-

ual evaluation, sizing and timing studies, which seek to characterize the

49

functions in terms of computer resource requirements, will provide indications

concerning which fanctions may be performed in a single processor, for examplu.

Once pote- tial candidates are defined, simulation of the condidates .ill pro-

vide quantitative data on the performance of the candidates. There are several

approaches to this simulation. These include ad hoc simulations, built on a

case-by-case basis, and use of general purpose structures such as the CCNM tool

previously described.

Other tradeoffs will affect the proposed solution These include consid-

erations of life cycle cost, risk and logistic support. For components which

are critical, or for which there is some concern relating to performance, th

use of emulation in conjunction with simulation will provide a detailed exam-

ination of capability. For emulation, if the emulation is intended to repre-

sent a processor, the software driving the emulation must be developed.

Once all the factors are taken into consideration and the evaluations

have been done, one candidate system will emerge as the best of those consid-

ered. After assigning the functions (and hence the requirements) to the

component pieces of proposed solution, the result is the allocated baseline.

The assignment of the functions to components extends the requirement trace-

ability of the methodology so that one may go from the basic requirement to

the actual implementation due to that requirement.

The allocated baseline is reviewed and agreed to at the System Design

Review (SDR). Following the SDR, further definition is done on the various

subsystems. This definition includes the specification of test requirements

and further detailing of the subsystems. The results of this process

are reviewed at the Preliminary Design Review (PDR) which ends the synthesis

phase of the development. From here, the system does into the implementation

phase which is not specifically covered in this document about ISI).

50

5.0 GPS USE OF TSD

5.1 Introduction

The Navstar Global Positioning Systum (GPS) is a space-based radio navi-

gation system that provides precise time and three-dimensional position and

velocity to CPS users. The GPS will consist of three major segments: the

Space Segment, the User Segment and the Control Segment. TSD methodology was

applied to the system definition of the operational Control Segment of GPS.

GPS represented an ideal test case since the solution was not predefined by

the customer and true top-down design could be done.

This discussion is not intended to be a full explanation of the GPS system

or even a top-level discussion of CPS itself. This discussion is instead

intended to describe the use of the TSD methodology and the lessons learned

and to provide suggestions for the future. Thus there will be very few

details about GPS. The aspects of what was done in terms of approach will

provide the major focus. The only aspect of CPS which is relevant is the

fact that it represents a real world case, it is a large system and it con-

tains real time and command and control aspects.

5.2 Approach

TSD methodology was used for the Stage 1 contract for GPS which resulted

in the B-level specification of the GPS operational control segment. Since

development to B-level specifications is the primary focus of TSD, the experi-

ences encountered in applying TSD to this contract are directly applicable to

the methodology development.

Due to the fact that GPS was a real contract and not just the experimental

application of a methodology to a "toy" problem, the effort was not able to

take advantage of any of the tools which were in the development stage (i.e.,

51

- - : :: .-- . .

pr rel ase prItktk t11 ps) . 'KD,. I,-N and ,, ,., both fit ilnto this category at the

L i me thc PS pr et t w 5 t, fS i'e in? d , Iti tig; ,, >1:1K-1 has now reached the

tat~s o t a r ,,.J to ', .tL, '. ,--i. la d ,ila: ,. ct r k I Iowev r, tLhe key

CoC p t s of ISI) were aS iou s 1 v a' I i ed to, the l io c development l he primary

steps of thC metIhdo oio were donet in tilL proper order. Particular attention

wasa paid to rC IUiret nt a t_r;iCea hiI itV, functional -decomposition and resource

allocation. kequir tint traceabil ity ,,a' n forced by manual methods. FUtIc-

t ionat decomposition was aided by usin 2 Charts and preliminary system

definition was aided by Cxt ens v u-,, O i!mulation.

lhie requirements analysis phase, had four major objectives:

1. Validate the imposed minimum requirements.

2. Determine cost/benefit of the customer identif ied enhancements.

3. Interpret the impcsed growth requirements.

4. Derive lower level detailed requirements.

The validation of the imposed minimum requirements focused on assuring

that the requirements satisfied the criteria of being unambiguous, necessary

and testable. The customer identified enhancements were prioritized based on

mission criticality and were incorporated into the baseline as fixed acquisi-

tion cost permitted. The growth requirements were interpreted to define

specific hardware and software design requirements. The net result of the

requirements analysis included a requirements baseline including all imposed

minimum and growth requirements, plus 75% of the desired enhancements.

Functional decomposition was undertaken _n several steps. The opera-

tional control segment was first divided up into four major components: the

ground antenna (GA), the monitor stations (MS), the master control station

(MCS), and communications. Although this division is primarily geographical

52

(there will be several mnonitor tations and ir, :, , .: . irt :-:i.-

ically scpar Ld froi th ningle ma.stcr ront -i :c), r . ,

at each point are in fa t iffer nt an,. tip 'i rei; ,.'i i: h, 1,1H I.- , ': I

[he total requirements were then allocaed tu' t'"I !"' ior -, stn to cI.k,

the functional decompos it ion to proc 'cd within eat Il s11s 11t : i tc I ri I, ..

The system was furthr decomposed with ii, ea, it s khv,%;tin and tL .< L!,.

interfaces between these lVOel I fUnct Lior. were, anci I ed and 14n- '1 1 i

,9 9

illustrated using an N Chart. The N Chart proved to he d(li!! ,: I Ii dIl

to the fact that the program included three major subcont ins t or and te \ 2

Chart was also able to show the interfaces hitwen companies.

The level 1 functions became the major conifig;uration itens ((is) and

computer program configuration items (CPCds) in the B-level specification.

To facilitate the resource definition process, these major functions wcre

decomposed one level further. Requirements on a per function basis were

then allocated to the various components (hardware, software, homan elements)

and served to provide a functional baseline, document d in an A-Isvvl speci-

ficat ion.

levelopment of a system architecture to support the functional decompo-

sition used a number of methods to define the major components. Anil%-i. of

activity threads, time lines and coupling lead to sizing and timing constraints.

Consideration of various modes of processing such as real. time, nt.ar real time

and hatch processing were evaluated for eo-ch function. Other criteria such as

growth and life cycle cost were applied to candidate architecture to d,1terminL

configuration sensitivities. Extensive design validation, using benchmarkin.,

and vendor written software, in parallel with simulat 'in adnl modeling:, proved

the credibility of the ultimate architecture.

53

jo I I s i ic, ! I I, 10 x-I s roe11 i rulinta and J i ii) it i oi I I t- > (,T,:

B1- I ve I upLv iIi cat i ons- wL'ur p rodUCed.FI fo r ts suwre madu, to !1 ureC t r'I (Lcuabi t'

0 f thu r VC, i rcn('TIWI t o thuI L~ 'uV ' k'C iIF a t i) 1 ,. mu !h' i i B- I kL VC I -JL'

c at on so- o)n e 1) t r W imat-r d~*IIea'I turn undur: thuL co I1 rac

5.3 ~~ eSut

I ho. overallI result s attained onl the CPS contract 1t'rL. 'UkL.t~i I t an j'. hi ;t

is not to to. that t here '.ert, nio prob lens dur in,,, t he''roram. ihO' neLt hldo loa''

wiile aid ilnc ill SOMC CaIskS, hindurul rgrs in otLhor.s. It jla Ispinlted outI

some f ai I inigs in igovornment sx'StL'onl doe elopmiont rugl atin hI' s ocy

* red later. In terms- o! a tus't Calse I-or mlethodol ogy as'spt(5;r'x'idu-d

a wealIthI of experiIC 0WhwiCh (2i l' ud b Ohbtained not110 cr xiv

Flie requ iremen ts anlalyS is e f fo rt suIFffered thle mos t in thIe asssnut. t

One of the most d iIFfficulIt aspec ts of requirement-; analvs i s was- th e offort t o

provide traceabilitY manually. Ihils effort was successfUl for the -lcu

spec ification and thure is a demonstrable traceabil ity from spec ific require-

mernts to A-level spec if icat ion parag7raphs. 'Iraceab ili tx to thL,- 'v a

somewha t less sueccess ful . 'The major prol 1 em is, t In faict that B-i cv-'1 s10c i -

f i cat ions are more detai led and. hrit c t ht., nuTmhl~ 01- jlara s io r _

than for thle A-i eve] specif icat io(ns. Inl aid i tion, nsrnar epI i r men t t racec-

ability, doesn't seemi to prov'ide any poJsit iveL h('1cfit t ron tCie h~i!ot v'Ik-'

of the per son tasked to do thle 01) . l i is harr i or r Cqii i rc -In edlCi at i on p~r)C cS S

and effective personal disc ip1line for the lover-I evce des i gnors . Ithe of fort

would also have been great 1%, aided byv thle use of an automla ted tool.

1he second aspect of rLoqu 1 relt slL- analyvsis tia t d idn ' t follow, tile ideal

pattern was the requiirements allocation, the assigning of rej4,irements (and

functions' to hardware, software and human elements. 'Iheoret icalIv', this

! aI '1"l, Viz t ' id il L t I 1v! t' L Itv

1 Int t ' t~ IIL ion, (!ii ',-1 !i A >'l v

1 .t' 'A C'.1 1 l' ioll !!1, 1 ' l ti !Irl 1

12102 :it "'lt'cd'

S'It

o I I- i - c 1 .,Irt it t - t t i 1- ' 1t 1 tl vi l] '1 ' 1 1

1'otc I ts 12

11 'tl~ h 1-1 ',11 fron La Pr l'Ji i t01 F' 1i i. w C 31 [t

vii ,jv-r St'L~' 2>'La I e,' Lt'i l i 1'IL t'l'.i§ 12'Jit' .t'!

Ad'I , i .- r i II

f t i x r..

tr0 iL L) k- I V t I tvp On' NI 1 r 1-1K ~ i'

Ihiw s t - i ii . I Lc '

I r od a I I,, xi i t 'o ~ x I 1; ,I I : 1 1

Theire art- iiAt dc I i :! 11 i. llii , d ~ Ik ol !r I !p. t Lt v t (.

de-sign proces-s. Iiif it Lii: i- ilk "r'!,I, 0-it r! !or

than how and as a r"SUlt .Irc'![v o olit provid it: I faro r ;ItJ urv

A met1Iodology' muILst contan Mjt'r mr- t~i lI.st phlil sp' A metftodo L)gV !ILL

conta in guidel toes, procedilrrrs rild rirI-i t iC12s, 311 Of' WI! i a,;re s uppIorted 1W

ei ther manualI or ZutorirrI;t 'J ti t m vi t L hus, concentratte on trOw hof

svsturi de- i go1 to be(riseu io "Ia I I

InII lit ofI tiIs er r-u I iII d 15 thIe 1")I me tirodOlog'

described ini t~is rei -ort i V I rimi r,.o [I i. C irich is silleft up to the

capabil it los of the s~scsIomc ~e 'rav the bigges;t gap is tihe step

fromI understand i rr what th Ie s vst em mis~t do (func tionaI baseIi nc) to the design

which will imp lenment t lose fliric t ion-;. Tihe process does not f low I ogi ca Il1

and there are no tools current Iv avaitl al) I e to support ti is; step.

An ot heLr p)roble1 (m w 1I It I i L t ho er r e tnt mei thIIodo I g v Ilas t o dioi t i i in t er opeu r -

aiilit w of tootis . 'lie tool s aire riot huh Iit aroturd c ormon data has es and the r

is no calrabil ity to automat icall m-vny fromr one to tire nlext. here shrould ho

no surprise that this is the ease due to tire fact tiat currently existing

tools have been developed inde[)orrdent iv. MIajor work rena ins to be done in

consolidating and coordinating various tool!s.

A\ppl icat ion of the T1rethIrdIogx', hias def ined othor irortco-mings, ,;specif icall,,

in tic tool 2 ED - k has, some capab lit Ies ohorare- not benf ic ia 1 for

sys tern U ig rd lak oeviihar e snw.>EiL-I) is current lx heavily

Oriented toward software &dos in, not svstem deign 1. F,1re thrtist of these tools

is h~ei rig red irected to make tien no re re spoiis iwo.

hat a flow (d 1 arams doni t prowvidie thei capab i I it V' to si ox%., c on tro I LQLeICil?0

s l. L 11.): t zii~ tt ih..rcit par-

1 1,i 11 Lilt .. i; W , L. cr Ilalid, , inf I~e uis ed t I

i I 1 tit thlev\ hav, i lit nrui) I m of tocomi nI V r arge as the

I 111C _' tia SL'S. I hu r '-Ot, t hus limitsc tile vil Ii 1nn.es s o f

1 \h "I Ic-.i "'nc Fto Change theml a.; the design progresses. Automation miigiit

A I c j-,: f a i ling somewhat .

m v::u!]t ion SurfferS from the cost of developing and executing it. DevelI-

11 'L ' 0S t i s a docd by, g en er aIi z ed SuL)ppo rt c ap1a bilI i t ies s u chI a s C C NN. Emula-

L ion reii res f air i , detai Led def init ion of the portion being emulated and is

tLu i i usie ful. i n thIie mo re d e ta ilIed d es igni pro cecss .

Re gurd Iless of thle Fail ings of current tools, the def init ion of a viable

apprachi to systeTm design has provided a baseline with which to evaluate

1) otniai tuois and techniques. Further work in the tool area, specifically

Cihcen' ritiog on automated tools, is continuing. Martin Marietta is convinced

the system dosign process is capable of being made and must be made more rig-

orutis, traceable and amenable to verification.

*lU.S. GOVERNMENT PRINTING OFFICE: 19?81.-714-025/83

59

MISSION
Of

Ronw Air Development Center
1RAnC 'ancm, and~ cxcu tc s c5ca ch, dct'ckoprmcnt, te. t anI d
5 'c C tcd Ctc(u (' s t' tico ,otcoamv i surpc'ott c' crniald, cnt~oe
C,&'rL01 ct '0 and Inc0 tc-; icc (C I) ac t'vLtfc. Tccfm.4'ak
anld ooointc('oq c up~~t tli in a cal5 o(technicaf cempetence
(1 5' tov'idcd to ESn Pic.rvzatm 04 ,I~ccs (P0-s anid othc ES1
k I~ ct t' . ~ T ito tica& tchnica' m ena~cas ai c

cc(IMPUknca ti(nls, cccct t~?a"flc tic Jfmdanecc anld ccllntic £ ,
eel 4'aick c ' tudand ac' t~vlcc ob f'c ts , n'jtceicn~ce data

crLftcctin aold Laii>w46, 61"k-ma ci t{&'noU5m fchn 1 gujllf
* eo~h~ c ca~ in &id 5'tate sciclc m(Ic ' c , ,(;

j-nf5('c5 and ctec toc t' ih' a ~it~n Ut, and

FILMED

